
Using Abstraction for Good

(and not evil)



Program to an abstraction, not a concrete type.
Programming Best Practice



Just a Starting Point

Be sure to check your 

surroundings before 

following any 

recommendations.



Abstraction is Awesome!

Maintain TestExtend



Abstraction is Awful!

Frustration

Complexity
Difficulty 

Debugging
Confusion



Abstract Class vs Interface

Abstract Class
 May contain implementation code

 A class may only descend from a 

single base class

 Members contain access modifiers

 May contain fields, properties, 

constructors, destructors, methods, 

events and indexers

Interface
 May not contain implementation 

code

 A class may implement any number 

of interfaces

 Members are automatically public

 May contain properties, methods, 

events, and indexers (not fields, 

constructors or destructors)



Abstraction Can…

Add flexibility

 Code that bends in the face of change

Add separation

 Code that doesn’t have to deal with implementation details

Add extensibility

 Code that adapts to new functionality



a href=“…”

 http://www.jeremybytes.com/Demos.aspx#INT

 IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET

 Full walkthrough of interfaces

 http://www.jeremybytes.com/Demos.aspx#AA

 Abstract Art: Getting Things “Just Right”

 Collection of articles talking about the pros and cons of abstraction

 http://www.jeremybytes.com/Demos.aspx#PR

 Practical Reflect in .NET

 A more detailed description of the Rules Engine example

http://www.jeremybytes.com/Demos.aspx#INT
http://www.jeremybytes.com/Demos.aspx#AA
http://www.jeremybytes.com/Demos.aspx#PR


Using Abstraction for Good

Next Up: Dependency Injection


