Learn the Lingo: Design Patterns

An overview of Design Patterns by JeremyBytes.com

Overview

You probably use design patternsinyoursoftware development without evenrealizingit. It'simportant
to learnthe lingo so that we have a shared vocabulary as software developers. This way, when
someone says he is using the Observerorthe Factory Method pattern, you have a good idea of the
conceptsinplay. Implementations willvary —as we’ll see, thisisanimportantfacet of design patterns.

We’'ll take a look at what design patterns are, getan introduction to the Gang of Four, and see common
implementations that we already use. Thenwe’llsee five of these patternsinactionin common code.
From here, you can jump off into your own investigation of design patterns.

What is a Design Pattern?

The most common definition of design patterns comes from Christopher Alexander: “Each pattern
describes aproblem which occurs overand overagainin our environment, and then describes the core
of the solution to that problem, in such as way that you can use this solution a million times over,
withouteverdoingitthe same way twice.”

The interestingthingisthat Alexander was referring to architecture —buildings and structures. The
Gang of Fourtakesthis same conceptandappliesittothe world of software.

The Gang of Four

The Gang of Four (alsoreferred to as GoF) are the authors of one of the best-known books on software
patterns—Design Patterns: Elements of Reusable Object Oriented Software — Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides. This book was originallypublished in 1994, but is still relevant
today. (My copy isthe 36" printing fromJuly 2008.)

The GoF describes aset of 23 patterns — definitely notan exhaustive collection (noris thattheirgoal),
butitis a good starting point.

A small warning about the GoF: this bookis not for the faint of heart. Itisquite technical and not
particularly friendly toward new developers or those just getting started with design patterns. Agood
introductory bookis Head First Design Patterns by Eric Freeman and Elisabeth Freeman. Thisbookis
extremely approachableand covers 12 of the GoF patterns. The one caveat isthat the examplesarein
Java. But since Javasharesthe Csyntax, it’s close enough to C# that it’s easy to follow along.

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 1



The Anatomy of a Pattern
Pattern descriptions are broken downinto four parts (most pattern descriptions contain additional
sections—butthese fourare considered to be essential).

Pattern Name
The pattern name isthe shared vocabulary that we can use. The pattern authors strive to make these

namesrelevantandrecognizable.

Problem
Thisis the problem space that the patternis setto solve. Asnotedin Alexander’s definition, thisisa
common problem that occurs overand overin the environment.

Solution

The solutionis the description of the elements that make up the design —including relationships,
responsibilities and collaborations between those elements. Thisisjustadescription, notaconcrete
implementation. Itisupto the developertodetermine the implementationthatisappropriate tothe
specificproblem.

Consequences
Each pattern has both benefits and costs. Everythinghastrade-offs, anditisimportantthat we

understand the consequences of ourdecisions. A design patternissimply atoolinthe toolbox. Notool
isalways the right tool, nor should we always try to use the same patternin everysituation.

We won’t be goinginto the details of each of these sections here. We'll be takinga more informal
approach. Butyoushould be aware of these parts for when you go on to look through pattern catalogs.

The GoF Patterns

As mentioned earlier, the GoF describes aset of 23 patterns. These patternsare listed below:

Abstract Factory Chain of Responsibility
Builder Command
Factory Method Interpreter
Prototype Iterator

Singleton Mediator
Adapter Memento

Bridge Observer
Composite State

Decorator Strategy

Facade Template Method
Flyweight Visitor

Proxy

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 2



Why Should We Care?

So, now that we’ve see what patterns are, the next questionis why should we care? There are a
numberof reasonsto learnthe standard design patterns and to also extend beyond those to other
pattern sets.

Well-Described Solutions

First, design patterns are well-described solutions. Someone else has already thoughtthrough the

problem space and has come up with a solution. There are few times that we wantto reinventthe
wheel. It's almostalways best to start with someone else’s working solution. We can always make
tweaks to that solution for our specificapplication.

Shared Vocabulary

Next, design patterns give us ashared vocabularyinour field. Asdevelopers,acommon language helps
us to communicate concepts with each other. And when we say thatwe are usingthe Observer pattern,
otherdevelopers willknow exactly what we mean.

Concise Language

Alongthe same lines as shared vocabulary, design patterns give us a very concise language that we can
use. Instead of saying, “l have a class that publishes an event and then notifies aset of subscribers when
that eventfires,” we can simply say, “I’'m using an Observer.” Generally, when communicating at the
designlevel, the conceptis more important than the specificimplementation.

Stay in Design Longer

Because design patterns are abstractand do not deal with specificimplementations, theyallowus to
stay indesign mode longer. Ratherthanthinkingaboutspecificlines of code orclassesthat we are
goingto implement, we can think aboutthe patternsand how theyfittogether. Because of this, we can
fine-tune our design before writing asingle line of code.

Encourage Other Developers

Finally, if we regularly use design patternsin ourcommunication with other developers, it will
encourage those who are not familiar with design patternstoinvestigate themandlearn them. This will
expand the use of the shared vocabulary to the next generation, and we can continue to share those
advantages we’ve seen above with otherdevelopers.

Patterns You Already Use

As an introduction to design patterns, we’ll take alook at several patterns that you probably already
use: Observer, Proxy, Chain of Responsibility, Adapter, and Iterator. Foreach of these, we’ll look at the
GoF description, areal-world example of the pattern, and a common C# implementationinasample
program. These five patterns are justasampling; you probably are using many of the other GoF
patternsas well.

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 3



Sample Code
We’ll be using 5 small sample applicationsin asingle solution. You can downl oad the source code here:
http://www.jeremybytes.com/Downloads.aspx. Each projectis named forthe pattern it demonstrates.

Observer

GoF Description
“Define aone-to-many dependency between objects so that when one object changes state, all its

dependents are notified and updated automatically.”

Real World Example

The Observeris bestthought of as a publish/subscribe model. Twitterisa good example of this. When
you decide to follow someoneon Twitter, you become an Observer of that otheruser (the Subject).
Thenwhenthat usertweets, all of that user’s followers will be notified —including you.

You're Already Using This
If you have used an eventhandlerin .NET, then you have used the Observer pattern. Let’s take alook at

some sample code.

The “Observer” project contains a simple form with 2text blocks and a button. Let’s hook up some
eventhandlerstothe button’s click event. Here’s the code-behind from MainWindow .xaml.cs:

public partial class MainWindow : Window

{
public MainWindow ()

{
InitializeComponent () ;
ClickMeButton.Click += Observerl;
ClickMeButton.Click += Observer?2;
ClickMeButton.Click += Observer3;
}

void Observerl (object sender, RoutedEventArgs e)

{
TextBlockl.Text = "Hello from Observerl";

}

void Observer2 (object sender, RoutedEventArgs e)

{
TextBlock2.Text = "Hello from Observer2";

}

void Observer3 (object sender, RoutedEventArgs e)

{

MessageBox.Show ("Hello from Observer3");

}

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 4


http://www.jeremybytes.com/Downloads.aspx

In this code we are settingup 3 Observers. Each oneissayingto the button, “Please tell me whenyou
getclicked” —subscribingto that event. This isrecorded by the Subject (the button) andisregistered as
adependency. And whenthe “object changes state” (from the GoF description above), each event
handleriscalled.

Here’s ouroutput:

B Observer | SRS .|1

Hello from Ob

Window.xaml

Hello fro w : Window

Click Me!

TIITCIS I I & p=roos =

ClickMeButton.
ClickMeButton.
ClickMeButton.

Hellz from Observer3

oK

Wheneverthe buttonisclicked, all three methodsfire. This populatesthe 2textblocks and a pop-up
message.

With Event Handlers, the Subject gets passed asthe sender parameter. Thisallowsthe Observerto
inspect the state of the subject. Asan example, if we had a check box instead of a button, when the
Clickeventfired, we could inspect the sender to seeif the check box was checked or not. In addition,
the same method can be hooked up to multiple subjects (e.g. asingle handlerthatis hooked up to

multiple buttons). The handlercanthen use the subject (sender) to determine which objectfired the
event.

As with all design patterns, there are considerations whe n deciding whethertoimplement the Observer
and how to implementit. A majorconsiderationisthatthe Observerobjecthasnoideawhenitwill be
notified orhow oftenit will be notified. Inthe case of our button’s c1ickevent, the button may be
clicked repeatedlyin quick succession, ornotat all. If we were doing more significant processingin our
Observer methods, we would need to allow for those situations.

If you wantto lookintothe Observerpatterna little further, the .NET 4.0 framework provides 2
interfacestodojustthat: IObservable<T>and |0bserver<T>. Check the samplesinthe VisualStudio
helpformore information on usingthese interfaces.

Proxy

GoF Description
“Provide asurrogate or placeholderforanotherobjectto control accesstoit.”

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 5



Real World Example

Someone with power of attorney (such as an agent) is a proxy. Whenyouinteract with the agent, you
interactas if you were communicating directly with the person or entity (the subject) that the agent
represents. If you create a contract, thereis nodifference whetherthe contractissigned by the agent
or the original subject. Fromyour perspective, you are contracting directly with the subject and the act
of working with the agentistransparent (atleast froma legal standpoint). The agent acts as a proxy for
that subject.

You're Already Using This
If you have used a Web Service or WCF service in .NET, then you have used the Proxy pattern. Let’stake
alookat some sample code.

The “Proxy” project containsasimple formwith alistbox and a button. In addition, we have added a
service referencetothe personservice inthe “WCFService” project. The TPersonService interface
and person class are defined inthe “WCFService” as follows:

[ServiceContract]
public interface IPersonService

{

[OperationContract]
List<Person> GetPeople();
}

public class Person

{
public string FirstName;
public string LastName;
public DateTime StartDate;
public int Rating;

Andthe Personservice isimplemented here:

public class PersonService : IPersonService

{
public List<Person> GetPeople ()

{

var p = new List<Person> ()
{

new Person () { FirstName="John", LastName="Koenig",
StartDate = DateTime.Parse("10/17/1975"), Rating=6 },

// Additional entries removed to save space
bi

return p;
}

So we can see that thisis the class that is actually going to be doing our work; thisis our subject. But
there’saproblem, it’s located across a network and exposed as aSOAP service. If we were to call this
from our code manually, we would need to constructa network channel, generate an XML document

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 6



formatted forthe service, waitfora response, and then parse the resulting XMLinto an object that we
can usein our code.

But instead of doing all of that, we use a Proxy. Inthis case, whenwe set up the service reference (by
choosingto “Add Service Reference” to our projectand then running through the wizard), Visual Studio
created a Proxy class that we can use.

Back in our “Proxy” project, here’s how we use the proxy inthe MainWindow.xaml.cs file.

public partial class MainWindow : Window
{ public MainWindow ()
{ InitializeComponent () ;
;rivate void ClickMeButton Click(object sender, RoutedEventArgs e)
{ var proxy = new PersonServiceClient();
PersonlListBox.ItemsSource = proxy.GetPeople();

}

We createanew personServiceClient and assignitto avariable called proxy. Atthispoint, we
can treat proxy as if we were dealingwiththe personservice classdirectly. Asyoucanseeinthe
second line of code, we call the GetPeople () method of the proxy object justas we would if we it
werea PersonService object..

The Proxy objectallows us to interact with the class as if it were part of our project. Butinreality, itis
generating an SOAP packet, makingacall across the network, letting that call do the actual work, and
thenturningthe resultbackinto an objectin ourlocal code. Thisis much easierthanhavingto code all
of thismanually.

Let’slooka little furtherintothe code that Visual Studio generated forus. Right-clickon
“PersonserviceClient” andchoose “Go to definition”. Thiswill take youtoa “References.cs” file.
Here’s part of the class:

public partial class PersonServiceClient
System.ServiceModel.ClientBase<Proxy.PersonService.IPersonService>,
Proxy.PersonService.IPersonService {

public PersonServiceClient () {

}

public Proxy.PersonService.Person[] GetPeople() {
return base.Channel.GetPeople();

}

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 7



You can see thatthe PersonserviceClient referencesthe Proxy objectcreated by Visual Studio.
The good part of thisisthat youdo not normally see this code (nordoyou needto).

The proxy provides an interface identical to that of the subject. This can be substituted transparentlyfor
the real objectinour code. Inthe case of our WCF Service, Visual Studio uses the services WSDLto
generate the proxy object with the correctinterface.

So, just like our example with the power of attorney above, we can interact with the proxyinourlocal
projectas if it were the actual entity thatis performingthe work. Itis completelytransparenttous. The
underlyinginfrastructure takes care of the rest.

Chain of Responsibility

GoF Description

“Avoid couplingthe senderof a requesttoits receiver by giving more than one obje cta chance to
handle the request. Chainthe receiving objects and passthe requestalongthe chain until an object
handlesit.”

Real World Example

Let’slook at everyone’s favorite pastime: calling tech support. If you have a problem withyourinternet
connection, you call the tech supportline and get Level 1 support. Thisis generally someonewho simply
reads off a listof things to try (“Did you try turningit off and on again?”). If Level 1 support can provide
afix, thentheissueisclosed. (And eventhoughit’s frustrating to go through this step, | have to imagine
that it must work for the majority of callers.) If Level 1support cannot resolve the issue, thenitis
escalatedto Level 2 (usually someone with some technical knowledge). If Level 2cannot resolve the
issue, thenitis escalatedto Level 3 (such as engineering staff).

Each of these Levelsis part of a Chain of Responsibility. If the support person can handle the issue, then
he/she doesandtheissueisclosed. Otherwise, the issue is passed to the next personinthe chain.

You're Already Using This
If you have done exception handlingin .NET, then you have used the Chain of Responsibility pattern.
Let’s take a look at some sample code.

The “ChainOfResponsibility” project contains atext block, acombo box, and a button. The button’s
Click eventcallsa method, andthat method calls asecond method. Thisfinal method throws an
exception. Here’s the code:

public partial class MainWindow : Window

{
public MainWindow ()

{

InitializeComponent () ;

}

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 8



private void ClickMeButton Click(object sender, RoutedEventArgs e)
{
Methodl () ;

private void Methodl ()
{
Method2 () ;

private void Method2 ()
{
switch (ExceptionBox.Text)
{
case "AccessViolationException":
throw new AccessViolationException();
case "NullReferenceException":
throw new NullReferenceException ();
case "ArgumentException":
throw new ArgumentException();
case "Exception":
throw new Exception();

If we runthe application right now, we get the default exception behavior: it simply reports the error
and thenshutsdown. We’lladdsome try/ catch blocksto handle the exceptions. First,in
Method2 ():

private void Method?2 ()
{
try
{
switch (ExceptionBox.Text)
{
case "AccessViolationException":
throw new AccessViolationException();
case "NullReferenceException":
throw new NullReferenceException () ;
case "ArgumentException":
throw new ArgumentException();
case "Exception":
throw new Exception();

}
catch (AccessViolationException ex)

{
TextBlockl.Text =

"Caught AccessViolationException in Method 2";

This catch blockisthefirstlinkin the Chain of Resonsibility. If the catch block can handle the
exception (i.e.ifitisan AccessviolationException), thenthe TextBlock getsupdated andthe

Learn the Lingo: Design Patterns presented by JeremyBytes.com

©Jeremy Clark 2012 Page 9



application continues. If it cannot handle the exception, it gets passto the nextlink of the chain. Let’s
fillinthose otherlinks:

private void ClickMeButton Click(object sender, RoutedEventArgs e)
{
try

{
Methodl () ;

}

catch (ArgumentException ex)

{
TextBlockl.Text =

"Caught ArgumentException in Click Event";

}

private void Methodl ()
{
try
{
Method2 () ;

}

catch (NullReferenceException ex)

{
TextBlockl.Text =

"Caught NullReferenceException in Method 1";
}

Within place, the Chain of Responsibility works as foll ows: First, the catch blockin Method?2 () triesto
handle the exception, ifitcannot, thenitgets passed tothe catch blockin Method1 (). IfMethodl ()
cannot handle the exception, itgets passed to the button’s C1ick eventhandler.

One of the consequences of the Chain of Responsibility is thatit’s possible forthe request to drop off
the end of the chain. In our sample, if you choose “Exception”, it doesnot gethandled by

Method2 (), so itgets passedtoMethodl (). ltdoesnot gethandled by Methodl (), soitgets passed
to the button’sclick handler. Itdoesnot gethandled by the button’s c1ick handler, soitdrops off
the end of the chain, and the application reports the exception and then shuts down.

(As aside note, this demonstrates why it’s abest practice toinclude a default exception handleratthe
applicationlevel. Butthat’sa discussionforanothertime.)

Adapter

GoF Description
“Convertthe interface of a classintoanotherinterface clients expect. Adapterlets classes work
togetherthatcouldn’t otherwise because of incompatible interfaces.”

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 10



Real World Example

Adapters convert something you can’t use into somethingyou can use. Inthe computerworld, we deal
with a lot of physical adapters. We have SD card adaptersthat let us use a miniSD card in a standard SD
card slot. On desktop computers, we often have adaptersthat change the keyboard connection from
USB to PS/2 (or vice-versa). We also have a number of USB connection types (whetherfull-size, mini-
USB or micro-USB) along with adapters to physically connect the different types. These are all adapters
that let us connect 2 otherwise-incompatible interfaces.

You're Already Using This
If you have used data bindingto display non-stringfields to usersina .NET application, then you have
used the Adapter pattern. Let’s take a look at some sample code.

The “Adapter” project contains a set of text boxes forinput and a set of text blocks for output. (We’ve
pre-populated the text boxes just so that we don’t have to type in the values whenwe run our
application.) The code-behind (MainWindow.xaml.cs) consists of the following:

public partial class MainWindow : Window
{

public MainWindow ()

{

InitializeComponent () ;

}

private void ClickMeButton Click (object sender, RoutedEventArgs e)
{

}
}

public class Person

{
public string FirstName { get; set; }
public string LastName { get; set; }
public DateTime StartDate { get; set; }
public int Rating { get; set; }

}

Here we have an empty C1lick eventhandlerforthe button as well as a description of the Person class.
Now, let’sadd some code to the event handler. Thiswill take the values from the text boxes, populate
thefieldsinthe rerson object, then putthe rerson object fieldsintothe output text blocks onthe
screen.

private void ClickMeButton Click(object sender, RoutedEventArgs e)
{
Person newPerson = new Person();
newPerson.FirstName = FirstNameInput.Text;
newPerson.LastName = LastNamelInput.Text;
newPerson.StartDate = DateTime.Parse(StartDatelInput.Text)
newPerson.Rating = Int32.Parse(RatingInput.Text)

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 11



FirstNameOutput.Text = newPerson.FirstName;
LastNameOutput.Text = newPerson.LastName;
StartDateOutput.Text =
newPerson.StartDate.ToString ("MM/dd/yyyy") ;
RatingOutput.Text = newPerson.Rating.ToString() ;

}
So,why isan Adapterneeded? Let’sstarthere:
newPerson.StartDate = DateTime.Parse(StartDatelInput.Text);

The problemisthat our inputiscomingto us as a string, but we're tryingtoassignthistoa pateTime
property —our “incompatible interfaces.” The bateTime.Parse () method doesa conversioninthis
case —so that our stringand DateTime can worktogether. The same thingis happening with the
Rating property (with int and a string).

We are doingthe opposite when we populatethe output text blocks. The Tostring () methodsofthe
StartDate and Rating propertiesallow usto populate a string value inthe text blocks.

This normally happensforus behind the scenes with databinding. The databinding engine works as the
Adapterthat resolves the incompatibility between the strings (the user-displayable values) and the
underlying data(inthe rerson object). If we need more control overthis process, we can use value
convertersinthe XAML world (if you want more information on value converters, you can check out
“Introduction to Data Templates and Value Convertersin Silverlight” at
http://www.jeremybytes.com/Demos.aspx.)

As longas we’re talking about data binding, let’s go back to the Observer pattern. Data bindingsets up
notification sothatwhen our underlying object changes, it notifies the Ul elements that are data-bound
to it sothey can update with the latest values. The reverseisalsotrue. Oftenyou will see multiple
patternsat workin complexinfrastructures. “Thinkingin patterns” allows us to combine simple ideas
into complex structures.

Iterator

GoF Description
“Provide away to access the elements of an aggregate object sequentially without exposingits
underlyingrepresentation.”

Real World Example

An lteratorallowsyouto ask forthe nextitemina sequence. Yourtelevision remote control does this.
The Channel Up button goes to the next channel. Internally, youdon’t care how the channels are stored
or whetherthe television decides to skip channels with nosignal. You can just keep clicking “next” until
you get to the end of the list. Note: all examples break down atsome point. Mostiterators stop when
they getto the end of the sequence; the television will start overat the beginning.

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 12


http://www.jeremybytes.com/Demos.aspx

You're Already Using This
Ifyou have useda foreach loopin .NET, thenyou have used the Iterator pattern. Let’stake alookat
some sample code.

In the “Iterator” project, we have a simple application witha ListBox and a Button. In addition, there
isa separate People class (thisisthe same as the classwe usedinthe WCFService above). We’lladd
some code to geta listof Person objectsand thenloadthemintothe ListBox:

private void ClickMeButton Click(object sender, RoutedEventArgs e)

{
List<Person> people = People.GetPeople();

var enumerator = people.GetEnumerator();
while (enumerator.MoveNext ())

{

PersonlListBox.Items.Add (enumerator.Current);
}
}

Our Iteratorisavailableinthe List<Person> variable (people). More specifically, List<T>
implements TEnumerable<T>, which describes an lteratorimplementation. Oursample codes gets the
enumeratorforour people object, and then calls MoveNext () to iterate through the collection.
(MoveNext () will returnfalseifitisalreadyonthe lastiteminthe collection). The enumeratoralso has
acCurrent property which points tothe currentitem. With this, we can iterate through our list and add
each itemtothe list box Ul control.

In the real world, you’re probably not doingitthis way. Thiswill look more familiar:

private void ClickMeButton Click(object sender, RoutedEventArgs e)
{

List<Person> people = People.GetPeople();

foreach (var person in people)

{

PersonlListBox.Items.Add (person) ;

}
}
The foreach constructin C# will work with any classthat implements TEnumerable or

IEnumerable<T>. Behindthe scenes, the code will getthe enumerator (Iterator) and use ittotraverse
the collection.

As aside note, the GoF description has the interator as an object separate from the actual collection.
Thisvariesfromthe .NET implementation of having the iterator functions withinthe 1.1 st<T> itself.
However, they note that ReadStream (from SmallTalk) is an object that contains the iterator methods;
and there’s nothing wrong with thatimplementation. The .NET StreamReader classes are much the
same. As with allimplementations, there are pros and cons to havingthe objects combined or
separated, and you need to take thatinto considerationifimplementing your own Iterator.

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 13



A Million Implementations

These are examples of implementations of just afew of the GoF patterns. Asa reminder, patternsand
implementations are completely independent; from our definition: “...describes the core of the solution
to that problem, in such as way that you can use this solution amillion times over, without ever doingit
the same way twice.” Design Patterns are simply descriptions of solutions, not descriptions of
implementations (although most pattern books have sampleimplementations as well).

One questionyou might askis whetherthese patterns are still relevant. Afterall, the examples that
we’ve looked at show how these design patterns are implementedin .NET—in the Event Handler
subsystem, the Proxy and the Service Reference wizard, the Exception Handling subsystem, ToString()
and Parse() methods, and the IEnumerable<T>interface. But we can betterunderstand how to use
these constructsin .NET if we understand the patterns. This allows us to recognize the problem space
and pull outan appropriate design pattern from ourtoolbox.

The GoF patterns were publishedin 1994, back when people were writing their own libraries of utilities
and helperobjects (infact, the GoF book has a few sample objectsin Appendix C “Foundation Classes”).
15 years laterthe basicproblems haven’t changed; but we are able to benefitfromthe .NET designers’
decisionsto give us some easy-to-use implementations of several of these patterns. Andalwaysrealize
that we can create our own implementationsif the .NET-provided ones don’tfitour particular problem.

Learn the Lingo

Design Patterns are a common language that we can use as developers. Since we’ve taken alook at
some specificpatterns above, you should be comfortablewhen another developersays thathe/sheis
usingan Observerora Proxy. In addition, you can be clearerin communicating with others whenyou
say you are usingan lterator or a Chain of Responsibility. With a little more study, you caninclude
Factory, Singleton, Decorator, Facade, and Command to yourvocabulary as well. Andasyou use these
pattern namesin describing your code, you mayinspire developers who don’t know patternsto start
lookingintothem.

Wrap Up

Design Patterns are well described and well tested solutions in the programming world. Butremember
that these are justtoolsinthe toolbox. Notool isappropriate for every situation, so study the benefits
and costs when considering whether aspecific patternis appropriate foryour problem.

The GoF patterns are a good starting point, there are innumerable other pattern catalogs. (Afew
pattern books are listed on my website: http://www.jeremybytes.com/Bookshelf.aspx#DP.) Some of
the more common patternsthatare populartodayinclude MVVM (Model-View-ViewModel), loC
(Inversion of Control), DI (Dependency Injection), and MVC (Model-View-Controller). Butdon’tuse a
patternjustbecauseitis popular;understand itfirst. Then go out and create some brilliant solutions.

Happy coding!

Learn the Lingo: Design Patterns presented by JeremyBytes.com
©Jeremy Clark 2012 Page 14


http://www.jeremybytes.com/Bookshelf.aspx#DP

