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ITERATOR 

Provide a way to access the 
elements of an aggregate object 
sequentially without exposing its 

underlying representation. 
 

 

 

• Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented 
Software. Addison-Wesley, 1994. 
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PROXY 

Provide a surrogate or placeholder 
to another object to control 

access to it. 
 

 

 

 

 

• Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented 
Software. Addison-Wesley, 1994. 
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ABSTRACTION IS AWESOME 

• Maintainability 
 

• Extensibility 
 

• Testability 
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ABSTRACTION IS A PAIN 

• Complexity 
 

• Confusion 
 

• Frustration 
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TWO TYPES OF DEVELOPERS 

• Over-Abstractors 
• “We’re going to need this someday” 

 Result 
• Overly complex 

• Difficult to maintain and extend 

 

• Under-Abstractors 
• “Let’s hard-code as much as possible” 

 Result 
• Rigid 

• Difficult to maintain and extend 
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THE GOLDILOCKS PRINCIPLE 

• Not too little 
 

• Not too much 
 

• Just right 
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YAGNI PRINCIPLE 

 

You Ain’t Gonna Need It 
 

• Add abstraction as you need it 

• Don’t add abstraction based on future speculation 
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DIFFERENT DATA SOURCES 

• Relational Databases 
• Microsoft SQL Server, Oracle, MySQL, etc. 

• Document / Object Databases (NoSQL) 
• MongoDB, Hadoop, RavenDB, etc. 

• Text Files 
• CSV, XML, JSON, etc. 

• SOAP Services 
• WCF, ASMX Web Service, Apache CXF, etc. 

• REST Services 
• WebAPI, WCF, Apache CXF, JAX-RS, etc. 

• Cloud Storage 
• Microsoft Azure, Amazon AWS, Google Cloud SQL 
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REPOSITORY 

Mediates between the domain 
and data mapping layers using a 

collection-like interface for 
accessing domain objects. 

 
 

 

• Fowler, et al. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003. 
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PLUGGABLE REPOSITORIES 
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WCF Service 

  Repository 

CSV File 

  Repository 

SQL Database 

  Repository 

Application 



• Data Access Operations 

 

 

 

 

 

 

 

SIMPLE REPOSITORY 
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REPOSITORY INTERFACE 

    public interface IPersonRepository 

    { 

        void AddPerson(Person newPerson); 
 

        IEnumerable<Person> GetPeople(); 
 

        Person GetPerson(string lastName); 
 

        void UpdatePerson(string lastName,  

             Person updatedPerson); 
 

        void UpdatePeople(IEnumerable<Person>  

             updatedPeople); 
 

        void DeletePerson(string lastName); 

    } 
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FACTORY METHOD 

Define an interface for creating an 
object, but let subclasses decide 
which class to instantiate. Factory 

Method lets a class defer 
instantiation to subclasses. 

 

 

• Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented 
Software. Addison-Wesley, 1994. 
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DEPENDENCY INJECTION 

Dependency Injection is a set of 
software design principles and 

patterns that enable us to 
develop loosely coupled code. 

 

 

 

 

• Seemann. Dependency Injection in .NET. Manning, 2012. 
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SERVICE LOCATOR 

The basic idea behind a service 
locator is to have an object that 
knows how to get hold of all of 
the services that an application 

might need. 

 
 

• Fowler, “Inversion of Control Containers and Dependency Injection 
Pattern.” http://martinfowler.com/articles/injection.html 
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SERVICE LOCATOR 

A Service Locator's prime 
responsibility is to serve instances 

of services when consumers 
request them. 

 
• An implicit service can serve Dependencies to 

consumers but isn't guaranteed to do so. 

 

• Seemann. Dependency Injection in .NET. Manning, 2012. 
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CONSTRUCTOR INJECTION 

• How do we guarantee that a necessary Dependency is 
always available to the class we're currently 
developing? 

 

By requiring all callers to supply the 
Dependency as a parameter to the 

class' constructor. 
 

 

• Seemann. Dependency Injection in .NET. Manning, 2012. 
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DECORATOR 

Attach additional responsibilities to 
an object dynamically. 

Decorators provide a flexible 
alternative to subclassing for 

extending functionality. 
 

 

• Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented 
Software. Addison-Wesley, 1994. 
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GETTING THINGS RIGHT 

• Abstraction is Awesome 
• Maintainability 
• Extensibility 
• Testability 

 

• Abstraction is a Pain 
• Complexity 
• Confusion 
• Frustration 
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GETTING THINGS RIGHT 

• Over-Abstractors 

• Result: Difficult to maintain and extend 
 

•Under-Abstractors 

• Result: Difficult to maintain and extend 

 

Know which one you are by nature 
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GETTING THINGS RIGHT 

•Goldilocks Principle 

  Striving for “Just Right” 

 
• Know your environment 

• YAGNI 

• Add abstraction only when you need it 

• Understand the consequences 
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THANK YOU! 

Jeremy Clark 
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• jeremy@jeremybytes.com 

• @jeremybytes 
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