
ABSTRACT ART
USING PATTERNS TO SOLVE REAL PROBLEMS

Presented by Jeremy Clark
www.jeremybytes.com

ITERATOR

Provide a way to access the
elements of an aggregate object
sequentially without exposing its

underlying representation.

• Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

©Jeremy Clark 2013

PROXY

Provide a surrogate or placeholder
to another object to control

access to it.

• Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

©Jeremy Clark 2013

ABSTRACTION IS AWESOME

• Maintainability

• Extensibility

• Testability

©Jeremy Clark 2013

ABSTRACTION IS A PAIN

• Complexity

• Confusion

• Frustration

©Jeremy Clark 2013

TWO TYPES OF DEVELOPERS

• Over-Abstractors
• “We’re going to need this someday”

 Result
• Overly complex

• Difficult to maintain and extend

• Under-Abstractors
• “Let’s hard-code as much as possible”

 Result
• Rigid

• Difficult to maintain and extend

©Jeremy Clark 2013

THE GOLDILOCKS PRINCIPLE

• Not too little

• Not too much

• Just right

©Jeremy Clark 2013

YAGNI PRINCIPLE

You Ain’t Gonna Need It

• Add abstraction as you need it

• Don’t add abstraction based on future speculation

©Jeremy Clark 2013

DIFFERENT DATA SOURCES

• Relational Databases
• Microsoft SQL Server, Oracle, MySQL, etc.

• Document / Object Databases (NoSQL)
• MongoDB, Hadoop, RavenDB, etc.

• Text Files
• CSV, XML, JSON, etc.

• SOAP Services
• WCF, ASMX Web Service, Apache CXF, etc.

• REST Services
• WebAPI, WCF, Apache CXF, JAX-RS, etc.

• Cloud Storage
• Microsoft Azure, Amazon AWS, Google Cloud SQL

©Jeremy Clark 2013

REPOSITORY

Mediates between the domain
and data mapping layers using a

collection-like interface for
accessing domain objects.

• Fowler, et al. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

©Jeremy Clark 2013

PLUGGABLE REPOSITORIES

©Jeremy Clark 2013

WCF Service

 Repository

CSV File

 Repository

SQL Database

 Repository

Application

• Data Access Operations

SIMPLE REPOSITORY

©Jeremy Clark 2013

REPOSITORY INTERFACE

 public interface IPersonRepository

 {

 void AddPerson(Person newPerson);

 IEnumerable<Person> GetPeople();

 Person GetPerson(string lastName);

 void UpdatePerson(string lastName,

 Person updatedPerson);

 void UpdatePeople(IEnumerable<Person>

 updatedPeople);

 void DeletePerson(string lastName);

 }

©Jeremy Clark 2013

FACTORY METHOD

Define an interface for creating an
object, but let subclasses decide
which class to instantiate. Factory

Method lets a class defer
instantiation to subclasses.

• Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

©Jeremy Clark 2013

DEPENDENCY INJECTION

Dependency Injection is a set of
software design principles and

patterns that enable us to
develop loosely coupled code.

• Seemann. Dependency Injection in .NET. Manning, 2012.

©Jeremy Clark 2013

SERVICE LOCATOR

The basic idea behind a service
locator is to have an object that
knows how to get hold of all of
the services that an application

might need.

• Fowler, “Inversion of Control Containers and Dependency Injection
Pattern.” http://martinfowler.com/articles/injection.html

©Jeremy Clark 2013

SERVICE LOCATOR

A Service Locator's prime
responsibility is to serve instances

of services when consumers
request them.

• An implicit service can serve Dependencies to

consumers but isn't guaranteed to do so.

• Seemann. Dependency Injection in .NET. Manning, 2012.

©Jeremy Clark 2013

CONSTRUCTOR INJECTION

• How do we guarantee that a necessary Dependency is
always available to the class we're currently
developing?

By requiring all callers to supply the
Dependency as a parameter to the

class' constructor.

• Seemann. Dependency Injection in .NET. Manning, 2012.

©Jeremy Clark 2013

DECORATOR

Attach additional responsibilities to
an object dynamically.

Decorators provide a flexible
alternative to subclassing for

extending functionality.

• Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

©Jeremy Clark 2013

GETTING THINGS RIGHT

• Abstraction is Awesome
• Maintainability
• Extensibility
• Testability

• Abstraction is a Pain
• Complexity
• Confusion
• Frustration

©Jeremy Clark 2013

GETTING THINGS RIGHT

• Over-Abstractors

• Result: Difficult to maintain and extend

•Under-Abstractors

• Result: Difficult to maintain and extend

Know which one you are by nature

©Jeremy Clark 2013

GETTING THINGS RIGHT

•Goldilocks Principle

 Striving for “Just Right”

• Know your environment

• YAGNI

• Add abstraction only when you need it

• Understand the consequences

©Jeremy Clark 2013

REFERENCES

• Design Patterns: Elements of Reusable Object-Oriented Code
• Gamma, Helm, Johnson, Vlissides

• ISBN 978-0-201-63361-0

• Patterns of Enterprise Application Architecture
• Martin Fowler, et al

• ISBN 978-0-321-127426

• Dependency Injection in .NET
• Mark Seemann

• ISBN 978-1-935182-50-4

• Inversion of Control Containers and Dependency Injection
Pattern

• Martin Fowler

• http://martinfowler.com/articles/injection.html

©Jeremy Clark 2013

http://martinfowler.com/articles/injection.html

THANK YOU!

Jeremy Clark

• http://www.jeremybytes.com

• jeremy@jeremybytes.com

• @jeremybytes

©Jeremy Clark 2013

http://www.jeremybytes.com/
mailto:jeremy@jeremybytes.com

