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Just for 
Experts?



Goal
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What is Reflection?

What is an assembly?

What is metadata?

How is the code compiled?
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Inspecting the metadata and 
code in an assembly.



.NET Assemblies
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Assembly
Manifest

Metadata
+ IL

Resources
(optional)



Type Definitions
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Assembly Information
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Referenced Assemblies
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IL (Intermediate Language)
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Feature Overview
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Activator

Type Assembly

ILGenerator
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Things You Can Do
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Encapsulation
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Input

Output



DEMO

Performance Concerns



Best Practice
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Practical Reflection Strategy

• Dynamically Load Assemblies
• Happens one time (at start up)

• Dynamically Load Types
• Happens one time (at start up)

• Cast Types to a Known Interface
• All method calls go through the interface

• No dynamic method calls – no MethodInfo.Invoke

• Avoid interacting with private members
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Various Data Sources
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MongoDB

Amazon AWS

Microsoft Azure

WebAPI

CSV SOAP Service

Microsoft SQL Server

Oracle

JSON Hadoop



Pluggable Repositories
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WCF Service

Repository

CSV File

Repository

SQL Database

Repository

Application



DEMO

Run-Time Binding



Benefits of Dynamic Loading
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Assembly-Qualified Type Name

• Fully-qualified type name (namespace and type)

• Assembly Name

• Assembly Version

• Assembly Culture

• Assembly Public Key (for strongly-named assemblies)
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Limiting Reflection

private void FetchButton_Click(object sender, EventArgs e)

{

ClearListBox();

var people = repository.GetPeople();

foreach (var person in people)

PersonListBox.Items.Add(person);

ShowRepositoryType(repository);

}

 No Reflection Here

 Method calls through 

IPersonRepository
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Scenario
Client #1
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Business
Rule
Business
Rule
Business
Rule

Order Entry
Application

Client #2
Business
Rule
Business
Rule
Business
Rule

Client #3
Business
Rule
Business
Rule
Business
Rule



Application
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Business Rule Interface
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Business Rules
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Maximum 
Discount based 

on
Customer 
Rating

Maximum of 
1 Starship
per Order

Only 1
Captain’s 

Chair
Allowed

Name Badge
must match

Customer Name



Discovery Process

• Locate all assemblies in the “Rules” folder

• Load each assembly

• Enumerate the types in the assembly

• Check each type to see if it implements our Rule interface

• Create an instance of each Rule and add it to the Rule 
Catalog
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Thank You!

Jeremy Clark

•http://www.jeremybytes.com

• jeremy@jeremybytes.com
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