
Practical Reflection

Presented by Jeremy Clark
www.jeremybytes.com



Just for 
Experts?



Goal

@jeremybytes



What is Reflection?

What is an assembly?

What is metadata?

How is the code compiled?

@jeremybytes

Inspecting the metadata and 
code in an assembly.



.NET Assemblies

@jeremybytes

Assembly
Manifest

Metadata
+ IL

Resources
(optional)



Type Definitions

@jeremybytes



Assembly Information

@jeremybytes



Referenced Assemblies

@jeremybytes



IL (Intermediate Language)

@jeremybytes



Feature Overview

@jeremybytes

Activator

Type Assembly

ILGenerator

•

•

•

•

•

•

•

•

•

•

•
•



Things You Can Do







@jeremybytes



Things You Can Do







@jeremybytes



Things You Can Do







@jeremybytes



Encapsulation





@jeremybytes

Input

Output



DEMO

Performance Concerns



Best Practice

@jeremybytes



Practical Reflection Strategy

• Dynamically Load Assemblies
• Happens one time (at start up)

• Dynamically Load Types
• Happens one time (at start up)

• Cast Types to a Known Interface
• All method calls go through the interface

• No dynamic method calls – no MethodInfo.Invoke

• Avoid interacting with private members

@jeremybytes



Various Data Sources

@jeremybytes

MongoDB

Amazon AWS

Microsoft Azure

WebAPI

CSV SOAP Service

Microsoft SQL Server

Oracle

JSON Hadoop



Pluggable Repositories

@jeremybytes

WCF Service

Repository

CSV File

Repository

SQL Database

Repository

Application



DEMO

Run-Time Binding



Benefits of Dynamic Loading

•

•

•

@jeremybytes



Assembly-Qualified Type Name

• Fully-qualified type name (namespace and type)

• Assembly Name

• Assembly Version

• Assembly Culture

• Assembly Public Key (for strongly-named assemblies)

@jeremybytes



Limiting Reflection

private void FetchButton_Click(object sender, EventArgs e)

{

ClearListBox();

var people = repository.GetPeople();

foreach (var person in people)

PersonListBox.Items.Add(person);

ShowRepositoryType(repository);

}

 No Reflection Here

 Method calls through 

IPersonRepository

@jeremybytes



Scenario
Client #1

@jeremybytes

Business
Rule
Business
Rule
Business
Rule

Order Entry
Application

Client #2
Business
Rule
Business
Rule
Business
Rule

Client #3
Business
Rule
Business
Rule
Business
Rule



Application

@jeremybytes



Business Rule Interface

@jeremybytes



Business Rules

@jeremybytes

Maximum 
Discount based 

on
Customer 
Rating

Maximum of 
1 Starship
per Order

Only 1
Captain’s 

Chair
Allowed

Name Badge
must match

Customer Name



Discovery Process

• Locate all assemblies in the “Rules” folder

• Load each assembly

• Enumerate the types in the assembly

• Check each type to see if it implements our Rule interface

• Create an instance of each Rule and add it to the Rule 
Catalog

@jeremybytes



Thank You!

Jeremy Clark

•http://www.jeremybytes.com

• jeremy@jeremybytes.com

•@jeremybytes


