
Unit Testing Makes Me Faster
Convincing Your Boss, Your Coworkers, and Yourself

Jeremy Clark

www.jeremybytes.com



Bosses Hate Tests

Production Code Test Code



Is Typing Really 
Our Limitation?



Different Kinds of Tests

• Unit Testing

• Integration Testing

• Performance Testing

• Exploratory Test

• Penetration Testing

• User Acceptance 

Testing (UAT)



What are Unit Tests?

A unit test is an automated 
piece of code that invokes 
a unit of work in the system 
and then checks a single 
assumption about the 
behavior of that unit of 
work.

The Art of Unit Testing by Roy Osherove



Non-Threatening
Text Here



Threatening
Text Here



What are Unit Tests?

A unit test is an automated 
piece of code that invokes 
a unit of work in the system 
and then checks a single 
assumption about the 
behavior of that unit of 
work.

automated piece of code

a unit of work

checks a single 
assumption

The Art of Unit Testing by Roy Osherove



What Makes Me Faster?

• Confirming Functionality

• Checking Regression

• Pinpointing Bugs

• Documenting Functionality



Confirming Functionality

Unit Tests are proof that my code

does what I think it does



Build Time 
Comparison



Disclaimer

We get these advantages when we 
are comfortable writing good tests.



Realistic 
Expectations



Checking Regression



Regression
Comparison



Pinpointing Bugs



Documenting 
Functionality



Disclaimer

We get these advantages when we 
are comfortable writing good tests.



Good Unit Tests

• Maintainable

• Dependable

• Runnable



Qualities of a Good Test

Maintainable

• Not Tricky

• Easy to Read

• Easy to Write

• Well-Named

Dependable

• Consistent 

Results

• Isolated

• Continued 

Relevance

• Tests the Right 

Things

Runnable

• FAST



Michael C. Feathers on Speed

“A unit test that takes 1/10th of a second to run 
is a slow unit test.”

“Unit tests run fast. If they don’t run fast, 
they aren’t unit tests.”

Working Effectively with Legacy Code by Michael C. Feathers



Qualities of a Good Test

Maintainable

• Not Tricky

• Easy to Read

• Easy to Write

• Well-Named

Dependable

• Consistent 

Results

• Isolated

• Continued 

Relevance

• Tests the Right 

Things

Runnable

• FAST

• Single Click

• Repeatable

• Failure Points to 

the Problem



Isolated and
Fast



Code 
Coverage

100% Code Coverage 
is not a guarantee



Conversations about Code Coverage

“What parts of your application are 
okay not to test?” 



The Stahl Standard

“What parts of your application do 
your users not care about?”

-Barry Stahl

Twitter: @bsstahl http://www.cognitiveinheritance.com/



Know the Goals
• Don’t do the right thing 

for the wrong reason.

• Unit testing will not fix 
bad development 
practices.

http://www.jenders.com/2012/01/08/thief-almost-caught-on-camera-stealing-thin-lg-television/



Martin Fowler on Fear

“Don’t let the fear that testing can’t catch all 
bugs stop you from writing the tests that will 
catch most bugs.”

Refactoring by Martin Fowler et al.



References

• The Art of Unit Testing with Examples in C# – Roy Osherove

• Refactoring – Martin Fowler et al.

• Working Effectively with Legacy Code – Michael C. Feathers

• Test-Driven Development by Example – Kent Beck

• Refactoring to Patterns – Joshua Kerievsky

• Agile Principles, Patterns, and Practices in C# – Robert C. Martin & Micah Martin

• Code Complete – Steve McConnell

• Beautiful Testing – Edited by Tim Riley & Adam Goucher



What Makes Me Faster?

• Confirming Functionality

• Checking Regression

• Pinpointing Bugs

• Documenting Functionality



Thank You!

Jeremy Clark

• http://www.jeremybytes.com

• jeremy@jeremybytes.com

• @jeremybytes

©Jeremy Clark 2015


